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Abstract-Forced convection to hydrodynamically and thermally fully developed laminar flow in eccentric 
annuli is studied. Following Reynolds et al. [l], we determine the solutions of the energy equation which 
satisfy certain fundamental boundary conditions. These fundamental solutions can be superposed to 
satisfy a wide variety of boundary conditions. Exact solutions of the energy equation could not be found, 
so an approximate solution was determined. Nusselt numbers, wall temperature and heat fluxes, wall-fluid 
temperature differences, and mean fluid temperatures are presented for a wide range of eccentricities and 

radius ratios. It is believed that these results are accurate to within 1 per cent. 
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fluid specific heat [L2/t2T] ; 
hydraulic diameter, 2(R, - R,) [L] ; 

absolute eccentricity [L] ; 
dimensionless eccentricity, defined in 
equation (3d); 
average heat-transfer coefficient on 
wall 1 for fundametal problem of 
k’th kind when the nonzero boundary 
condition is applied to wall j, defined 
equation (36) [M/t3T]; 
unit vector in r direction; 
unit vector in C#J direction; 
thermal conductivity of fluid 
[ML/t3T]; 
unit normal to outer boundary, de- 
fined in equation (19); 
Nusselt number based on h$’ defined 
in equation (37); 
fluid pressure [M/Lt’] ; 
heat flux at wall j [ M/t31 ; 
radial coordinate [L] ; 

.___ 
* Work performed under the auspices of the United 

States Atomic Energy Commission. 
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radius of inner boundary of annulus 

PI; 
radius of outer boundary of annulus 

PI ; 
dimensionless radial coordinate, de- 
fined in equation (3a); 
fluid temperature [T] ; 
dimensionless fluid temperature for 
the k’th fundamental problem when 
the nonzero boundary condition is 
applied to wall j. 
dimensionless average temperature 
of wall 1 for the k’th fundamental 
problem when the nonzero boundary 
condition is applied to wall j; 
dimensionless fluid cup mixing tem- 
perature for k’th fundamental problem 
when nonzero boundary condition is 
applied to wall j, defined in equation 

(42); 
fluid velocity [L/t] ; 
average fluid velocity [L/t] ; 
dimensionless velocity, defined in 
equation (3b) : 

$ Any consistent set of units may be used. Dimensions 
t Present Address: American Cyanamid, Berdan Avenue, are given in terms of mass (M), length (L), time (t), and 

Wayne, New Jersey 07470. temperature (T). 
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I. INTRODUCTION 
_. 

ECCENTRIC annuli are employed in a variety of 
heat transfer systems. Since an annulus contains 
two surfaces on which thermal conditions 
may be independently specified, there are a 
large number of heat transfer problems of 
significant interest. Some years ago, Reynolds 
et al. [1] completely solved the problem of heat 
transfer to fully developed laminar flow in 
concentric annuli. They realized that with 
the usual assumptions the energy equation is 
linear, and therefore that a temperature field 
satisfying arbitrary boundary conditions could 
be determined by simply adding appropriate 
multiples of temperature fields satisfying certain 
fundamental boundary conditions. Four funda- 
mental boundary conditions were defined and 
the temperature fields satisfying these boundary 
conditions were called fundamental solutions. 

We will be concerned with laminar forced 
convection in eccentric annuli, but we will limit 
our study to hydrodynamically and thermally 
fully developed flows. Fully developed funda- 
mental solutions of the third kind result in in- 
determinate forms which cannot be evaluated. 
In this paper, we will obtain fully developed 
fundamental solutions of the first, second, and 
fourth kinds. 

The only previously published study of laminar (34 
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dimensionless flow rate parameter, forced convection in eccentric annuli is that of 
defined in equation (20) : Cheng and Hwang [2]. Their boundary con- 
fluid flow rate [M!t] : ditions are not one of the fundament sets. We 
axial coordinate [L] ; will discuss their solution in more detail at 
radius ratio, R 1 JR, ; the appropriate place. 
dimensionless eccentricity, defined in 
equation (3e); II. MATHEMATICAL DEVELOPMENT 

fluid viscosity [M/Lt] ; Because of symmetry we need only consider 
fluid density [ M/L31 ; the domain shown in Fig. 1. A cylindrical co- 
outer boundary of annulus; ordinate system is established with origin at the 
dimensionless flux on wall 1 for the 
k’th fundamental problem when the 
nonzeroboundaryconditionisapplied 
to wall j; 

Outer boundary 

angular coordinate. 

(d ,,/” \ 
I 

l---E _I 

FIG. 1. Basic domain for an eccentric annulus. 

center of the small cylinder. The equation of the 
outer boundary is 

T(R,c#+R’-2REcos++E2-R;=O.(l) 

We assume that the fluid is in fully developed 
laminar flow. With the additional &ssumption 
that fluid properties are independent of tem- 
perature the momentum balance becomes 

(2) 

It is convenient to introduce the following 
dimensionless variables : 

I = RfR,, (34 
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(3c) 

(3d) 

description of the method until after the tem- 
perature equation is derived. 

With the usual assumptions that fluid proper- 
ties are independent of temperature and that 
axial conduction is negligible, the energy balance 
becomes 

E = E/(Rz - R,) = ae/(l - a). 

In terms of these dimensionless variables 
equation for the outer boundary becomes 

T(r, 4) - r2 -2recos$+e’-l/u2=0, 

and the momentum balance becomes 

1 a2u 
+172= - 1. 

r d4 

W 
the 

(4) 

(5) 

Equation (5) is to be solved subject to the follow- 
ing boundary conditions: Symmetry conditions 
require 

$f (r, 0) = $ (r, K) = 0. 

Along solid boundaries the velocity vanishes 

u(l,$) = 0, (7a) 

u(T) = 0. (7b) 

By the use of bipolar coordinates, it is possible 
to obtain an exact solution for the velocity 
field. It does not seem possible, however, to use 
the same technique to obtain an exact solution 
for the temperature field. Since we must use an 
approximate technique to determine the tem- 
perature field, we find it simpler and more 
convenient to use the same approximate tech- 
rlique to obtain both the temperature and velo- 
city fields. The general solution of equation (5) 
which satisfies boundary conditions (6) and (7a) 
is 

u(r,q5) = t(l - r2) + B,lnr + 5 (I” - r-“) 
n=l 

x B,cosn& (8) 

It is impossible to choose the B’s so that boun- 
dary conditions (7b) is satisfied everywhere. We 
therefore use a technique in which boundary 
condition (7b) is approximately satisfied. Since 
the same technique is used to solve the tempera- 
ture equation, we will postpone a more detailed 

Pgg. (9) 

Symmetry considerations give two boundary 
conditions on temperature: 

z(r,O) = g (r, n) = 0. (10) 

Additional boundary conditions on temperature 
depend on which of the fundamental problems 
is under discussion. For the fundamental problem 
of the first kind, we specify that the inner and 
outer surfaces are kept at uniform, but different, 
temperatures.? Denote the temperatures at the 
inner and outer surfaces by Tf and T$. We 
introduce the dimensionless temperature Tr), 
defined by 

Tbl’ G 
T* - T: 

T;: - T:’ 
(11) 

In equation (11) we have adopted the notation 
used by Reynolds et al. [I], in which YP is the 
dimensionless temperature for the fundimental 
problem of the k’th kind when the nonzero 
boundary condition is applied to wall j. The 
boundary conditions on Tjj) are then 

T$-j’ (1) = 0, 

Tb”(T) = 1. 

Pa) 

(12b) 

With the two walls held at different temperatures, 
it is clear that under fully developed conditions 
whatever heat enters at one wall leaves at the 

t For the fullv develooed case such as we are considerine 
here, there is e&ntial& only one fundamental problei 
ofthelirstkind.Thisisnotthesituationin thethermaldevelop- 
ment region [l], where there are two distinct problems 
depending on whether it is the inside or outside surface which 
is raised above the entering fluid temperature. 
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other, so that %T*/az is zero. For the fundamental where n is the unit outward normal on the outer 
problem of the first kind, then, in terms of di- boundary. Equation (15b) therefore becomes 
mensionless variables, equation (9) becomes 

On r: n. VTi2) = 0. (15c) 
+ J8’Tf’ 

~ = 0. 
r2 13~5~ 

(13) In turn, n is calculated by 

VT 
For the fundamental problem of the second 

kind we specify that at wall j there is a uniform 
axial heat addition, qy Btu/h ft2, while the other 
wall is insulated. For the concentric annulus 
these two conditions completely specify the 
problem. In contrast, in an eccentric annulus we 
must further specify the peripheral variation of 
temperature or flux on the active wall. Two 
limiting cases may be distinguished: uniform 
temperature and uniform flux. Although both 
conditions are of interest, the concept of funda- 
mental solutions which may be added to obtain 
solutions of more complex problems requires 
that the flux be uniform peripherally as well as 
axially, and this is the case which we will examine 
(The problem studied by Cheng and Hwang [2] 
is related to the fundamental problem of the 
second kind, in which, however, there is heat 
addition at both walls, and in which the peri- 
pheral temperature is uniform.) We introduce 
the dimensionless temperature 

Introducing equation (4) into this equation, we 
find 

(r - e cos 4) i, + (e sin 4) i+ 

‘= [(r - e cos 4)’ + (e sin 4)2]112. (16) 

When the outer wall is active the boundary 
conditions on Tr’ are 

13T$j’ o 

%r r=l = * 
UW 

0nr:n.VTb2’ = a 
2(1 - a)’ (17b) 

For the fully developed case, %T*/%z is constant 
and may be evaluated by an energy balance. 
When the inner wall is active, equation (9) 
becomes 

ia dT!2’ -4 1 1 a2T!2’ 

r %r 
rI+_L_= 

7oY.u 

ar r2 84’ 2(1 - a)W’ 
(18) 

(14) When the outer wall is active, equation (9) 
becomes 

In equation (14), j is either i or o depending on 
whether it is the inner or outer wall which is 
active. When the inner wall is active the boundary 

1 a2Tr’ ZU 

+-2=2(1_a)W. r2 &#I 
(19) 

conditions on Tt2’ are I 

aTt2’ 
In these equations W is defined by the double 

1 c( 

8r ,=r = -2(1- 
( 1 5a) integral n r 

On.:T=(). 
W= d4 urdr. 

s s 
(20) 

(15b) ri 1 

In equation (15b) the derivative is taken normal The upper limit on the first integral indicates 

to the outer boundary. It is most conveniently that the integration is to extend to the outer 

calculated using the vector identity boundary. 
For the fundamental problem of the fourth 

aTt2’ 
I = n. VTt2’ kind, we specify that at one wall there is a uni- 
%n form axial heat addition, q; Btu/h ft2, while the 
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other wall is maintained at a constant tempera- 
ture, Tz. We introduce the dimensionless tem- 
perature 

T($’ E T* - T,* 
J 

q;D,,/k * 
(21) 

When the inner wall is active the boundary 
conditions on Tt4) are I 

a T(i4’ a 

ar r=l = -2(1 (224 

Ti4’(r) = 0. (22W 

When the outer wall is active the boundary 
conditions on TV’ are 

Tc’(1, 4) = 0, (23a) 

0nr.n. VTf’ =A. 
2(1 - a) 

(2W 

As was the case for the fundamental problem 
of the first kind, for the fundamental problem 
of the fourth kind all the heat which enters at 
one wall leaves at the other, so that aT*/az is 
zero. The energy equation satisfied by Ty’ is 
therefore the simple form, equation (13). 

With the equations and boundary conditions 
established we may now determine the tempera- 
ture field. Since the procedure followed in all 
cases is similar, we will conserve space and report 
in detail only the solution for the fundamental 
problem of the second kind with the inner wall 
active. We must solve equation (18) subject to 
boundary conditions (10) and (15). The solution 
of equation (18) which satisfies boundary con- 
ditions (10) and (15a) is 

Tt2’ (r 4) = ‘ 7 
r4 In r + ----- 
16 4 

B, 
[ 

r2(ln r - 1) + In r + B, 1 [ G - 2rlnr 

a, 
11 

- cos c#J + 

24 c [ 

r” +2 r-n+2 

B” -+- 
n+l n-l 

n=2 

2r-” 

+ (n + 1) (n - 1 I 
a -~ Inr 

1) cos n4 2(1 - a) 

+ C,, + f Dn(r-” + r”) cos n$. (24) 
II=1 

In equation (24) we may arbitrarily set C, 
equal to zero, since, as the boundary conditions 
show, we are solving a Neumann problem, and 
therefore cannot determine the absolute tem- 
perature level. As in the case of the B’s and equa- 
tion (7b), we find that it is not possible to choose 
the D’s so that equation (15b) is satisfied every- 
where. We therefore use an approximate method 
in which we truncate the series appearing in equa- 
tions (8) and (24) and solve for the unknown B’s 
and D’s by satisfying equations (7b) and (15b) at 
a finite number of points. We truncate the B 
series in equation (8) at n = N - 1, and the D 
series in equation (24) at n = N, so that there are 
a total of N unknown B’s and N unknown D’s. 
Let M denote the number of points on the outer 
boundary at which (7b) and (15b) are satisfied. 

We could set M = N and solve for the B’s 
D’s. This in fact is just the collocation method 
[3]. However, the collocation method often 
leads to difficulties. For example, in a study of 
laminar flow in eccentric annuli, Tiedt [4] re- 
ported that at an eccentricity of 0.8 he could not 
obtain solutions for radius ratios smaller than 
0.2; and at an eccentricity of 1, he could not 
obtain solutions for radius ratios smaller than 
0.4. We decided, therefore, to use the least 
squares method [5] which was first used for heat 
transfer problems by Sparrow [6]. In the least 
squares method, the number of points at which 
the boundary condition is satisfied is much larger 
than the number of unknowns. We found that 
choosing M = 3N was satisfactory. 

To avoid the necessity of using weight factors 
[5], we selected the M points to be uniformly 
distributed on r. A simple trigonometric analysis 
of Fig. 1 shows that the M points will be uniformly 
distributed on r if 4 coordinates are calculated 
using the formula 
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4j = arctan 

j=O,l,..., M- 1. (25) 

In using equation (25) we always choose 0 < 4 
< rr. The rj coordinates are calculated from the 
solution of equation (4). Satisfying equation (7b) 
gives the following equations for the B’s 

N-l 

B,lnrj + C (<---,‘“)B,cosn$j 

n=l 

= a(rf - l), j = 0, 1,. . . , M - 1. (26) 

Similarly, satisfying equation (15b) gives the 
following equations for the D’s. 
N 

c D, rl[fl(?y’ - r,:n-l)COS nf#Jj 

n=l 

- f2(rj” + <) sin n c$~] = ‘a 
8(1 - a)W 

+; +B 
1 [ 

i $rT - 2(ln rj + 1) + $ 1 cos 4j 
J J 

N-l 

+ 4 
C[ 

n+2 n-2 pn+l 
-q+l --r 

n-l n-l 
II=2 

2n 

- (n - l)(n + l)r 
-(n+l) 1 I cos ncjj + 

3 1 
? - 2rj In rj - c sin c$~ 

J 1 
N-l 

fl+2 r7”+2 2r-” 
+ p+ 

n+l kl + (n + l)(n - 1) 1 
n=2 

f1a 
2(1 - a)rj’ 

j=O,l,...,M- 1 

(27) 

In equation (27) we have introduced fi and f2 
which are defined as 

fi = rj’ - rje cos q5j 

f2 = esin4j. 

We first solve equation (26) for the B’s, and then, 
with the B’s known we solve equation (27) 
for the D’s. The best way of solving equations (26) 
and (27) is by the use of the Gram-Schmidt 
orthogonalization procedure described by Davis 

[51* 
Essentially the same procedure is used to 

develop the other fundamental solutions, but 
the equations for the temperature and the D’s 
are, of course, different. 

III. RESULTS 

It is important to estimate the accuracy of the 
results obtained using this approximate method. 
For the velocity field there is an exact solution 
against which we can compare our approximate 
solution. Tiedt [4] tabulates the product of 
friction factor and Reynolds number as a function 
of radius ratio, a, and eccentricity, E. The friction 
factor and Reynolds number are defined as 

(28) 

Re ~ Dh”*p 
(29) 

P 

Introducing dimensionless variables and using 
equation (20) we find that the product of friction 
factor and Reynolds number is 

hRe = 47r(l - a’)(1 - a)’ 
Wa2 ’ 

(30) 

With the B’s known from the solution of equa- 
tion (26), the velocity field may be calculated as 
given by equation (8), and W may be determined 
by numerically evaluating the double integral 
given by equation (20). We found that an 8 by 8 
Gaussian integration formula was sufficient to 
maintain the error in W below 01 per cent. 
With W known, equation (30) may be used to 
calculate hRe. Using only five unknowns and 
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Table 1. Comparison of exact and approximate values of hRe 

Eccentricity 

a 

0.2 
0.1 
0.02 
0.01 
oGO5 

Exact 

56.724 
60.523 
64.727 
65.236 
65.408 

0.8 

Approximate % Error 

56.121 0.005 
60.48 1 007 
64.654 0.11 
65.170 0.10 
65.350 0.09 

Error 

48.736 
54402 
61,598 
62.761 
63.370 

1.0 

Approximate y0 Error 

48.716 0.04 
54.361 0.06 
61.638 - 0.06 
67.788 - 0.04 
63.385 - 0.02 

requiring the velocity to vanish on 15 points on 
the outer boundary, approximate values of 
hRe were calculated and are compared with 
Tiedt’s exact values in Table 1. Comparisons are 
made at combinations of a and c for which 
Tiedt found the collocation method failed, and 
for which he used the exact solution of Piercy 
et al. [7]. Table 1 shows that even for these 
difficult geometries the maximum error in the 
least squares results is 0.1 per cent. For smaller 
values of e and larger values of a the error would 
be less. For all E, in the limit as a + 0, the core 
vanishes and the annulus becomes a cylindrical 
tube, for which we have hRe = 64. We con- 
clude, therefore, that the least squares method 
predicts accurate values of hRe over the complete 
rangeO<E<l,O<C1<1. 

Of course, there are no exact heat transfer 
results against which to compare our results, 
otherwise there would be no need for this study. 
However, there are a number of ways we can 
estimate the accuracy of our results. One method 
depends on the fact that the energy equation is 
elliptic. For elliptic equations the maximum 
principle states that the maximum deviation 
between the approximate and exact solutions 
in the interior of a region is no larger than the 
maximum deviation between the approximate 
and exact solutions on the boundary. For the 
fundamental problems of the first kind and of 
the fourth kind when the inner wall is active, 
we specify the temperature along the outer 
boundary. After the D’s are determined it is a 
simple matter to calculate the temperatures 
along the boundary and to determine the maxi- 

mum deviation between the calculated and 
and specified temperatures. As we shall explain 
below, our primary interest is in average quan- 
tities, e.g. the average Nusselt number and the 
difference between the average wall temperature 
and the average fluid temperature, and it is 
therefore perhaps more meaningful to calculate 
the deviation between the average wall tempera- 
ture and the specified wall temperature. The 
average error is then calculated as the ratio of 
this average deviation to the difference betwen 
the average fluid and wall temperatures. For 
the fundamental problem of the first kind, we 
we found that the average error is less than 1 per 
cent for all values of c( if e is less than or equal to 
@97. For the fundamental problem of the fourth 
kind with the inner wall active, we found the 
average error is less than 1 per cent in the region 
defined by the inequalities: 

E < 0.9, 0.0 < c? < 1.6 

E > 0.9, 02 < u < 1.0. 

This method of estimating the error cannot be 
used for the fundamental problem of the second 
kind or for the foundamental problem of the 
fourth kind with the outer wall active, since 
for these problems we specify the gradient 
of temperature and not the temperature itself. 
For these cases, we estimated the error by re- 
peating a particular calculation with increasing 
values of M and N until further increases caused 
no significant change in the results or until the 
equations for the D’s became ill-conditioned 
and no solution was obtained. For the funda- 
mental problem of the second kind with the 
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outer wall active we determined that the errors in 
the results are less than 1 per cent for all radius 
ratios if the eccentricity is less than or equal to 
0.98. For the fundamental problem of the second 
kind with the inner wall active we found that the 
region in which accurate results were obtained 
was slightly smaller. The simplest way to define 
the region in which accurate results were obtained 
is to give results in the Tables and Figures which 
follow only for those combinations of o! and E 
for which the errors are estimated to be less than 
1 per cent. A similar procedure was used for the 
fundamental problem of the fourth kind with 
the inner wall active. Most of the results reported 
here were obtained using N equal to 15 and M 
equal to 45. A typical calculation took about 
3-s on a CDC-6600. 

In presenting our results it is convenient and 
useful to follow Reynolds et al. [l]. For the 
fundamental problem of the first kind they 
define the dimensionless fluxes 

In terms of dimensioness variables these equa- 
tions become 

In these equations an overbar indicates an 
average value. We have again adopted the 
nomenclature of Reynolds et al. [il. @j:) indi- 
cates the dimensionless flux at wall 1 for the 
fundamental problem of the k’th kind when the 
nonzero boundary condition is applied at wall j. 
It is not necessary to use equation (32) to calcu- 
late @h:‘; since the heat which enters at one wall 
leaves at the other, we have the simple relation- 
ship 

For the fundamental problem of the second 
kind, Reynolds et al. define the dimensionless 
flux so that it is unity on the active wall and zero 
on the adiabatic wall. Similarly, for the funda- 
mental problem of the fourth kind the dimen- 
sionless flux is defined so that it is unity at the 
wall on which the flux is specified. Straightfor- 
ward energy balence considerations, like those 
which lead to equation (33) give 

@$’ = - fx (34) 

$2’ = - l/U. (35) 
The average heat-transfer coefficient on wall 1 

for the fundamental problem of the k’th kind 
when the nonzero boundary condition is applied 
to wall j is defined as 

hijk) z 
4;l’k’ 

T*(k) _ T*(b)’ 
lJ ml 

and the average Nusselt number 

(36) 

(37) 

In equation (36), the overbar indicates an average 
value, Tctk’ is the average temperature on the 
I-th wall, and Tzy’ is the cup mixing fluid tem- 
perature. The evaluation of these average tem- 
peratures will be discussed shortly. For the 
fundamental problem of the first kind, intro- 
ducing equation (36) into equation (37) and 
using equations (1 l), (31) and (32) gives 

Tjf’ _ T”.” 
ml 

(38) 

In the fully developed region we have 

Nu&’ = Nub’; 

Nu#’ = Nu!?’ II . 

Similarly, for the fundamental problem of the 
second kind we have 

I 1 

N@ = 7”(A) _ T(2)’ Z=j (39a) 
JJ ml 

g#’ = - r&b’ = - &A?’ 
II . (33) i 0 l#j. (39b) 
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48- 

44- 

40- 

36- 

0 - I-O 

l 

FIG. 2. Effect of eccentricity and radius ratio on Nuif) and 
N@. 

Finally, for the fundamental problem of the 
fourth kind we have 

Nub”d = 
1 

Tb4,’ _ 734’ 
m0 

1 
NU’4’ = - 

aT:J. (4W 

The calculation of the average temperature 
on the inner wall presents no difficulty, but the 
average temperature on the outer wall is not 
straightforward. The appropriate equation is 

n 

Tbkj’ = i 
s 

Ty’ (r) [I’ + (dr/d@2]“2 d+. (41) 

0 

In evaluating the integral, r and dr/d4 are 
obtained from the solution of equation (4). 
The cup mixing fluid temperature is defined in 

32-- 

28- 

24- 

I I I I I 
0.2 0.4 0.6 0.6 IO 

a 

FIG. 3. Effect of eccentricity and radius ratio on Nut,’ and 
Nub;‘. 



1170 MICHAEL L. TROMBETTA 

50 o1 

00005- 

oooo'O 0 I I 02 II 03 0.4 III 05 0.6 07 II 0.8 09 II IO 

l 

FIG. 4. Effect of eccentricity and radius ratio on Nui:’ 

the usual way and is calculated using the equation 

(42) 

The integrals in equations (41) and (42) must be 
evaluated numerically. 

The various Nusselt numbers are shown as 
functions of radius ratio and eccentricity in 
Figs. 2-9. Results are shown only where they 
are believed to be accurate to within 1 per cent. 
We have tabulated various dimensionless fluxes 

and temperatures for eccentricities of 0.2, 0.4, 
0.6,0% 0.9 and 0.95.t Results for an eccentricity 
of zero are given by Reynolds et al. [ 11. To con- 
serve space, fluxes which may be calculated 
by simple equations as equations (33H35) 
were not tabulated. For concentric annuli there 

5 

I 

0 

C 

0.0 

&j s 
3 

0.c 

0.00 

o.oc 

O-000! 

0~000 

)I 

5 I 
'0 

II /I// II II 
0.1 O-2 0.3 04 0.5 06 07 08 09 IO 

E 

FIG. 5. Effect of eccentricity and radius ratio on Nubj 

t Tabular material is deposited as document NAPS 
01185 with the ASIS National Auxiliary Publications 
Service, c/o CCM Information Corporation, 909 Third 
Avenue, New York, N.Y. 10022 and may be obtained for 
82.00 for microfiche and 15.00 for photocopy. 
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I I I I I 
0 0.2 0.4 06 0.8 I.0 

E 

FIG. 6. Effect of eccentricity and radius ratio on Nu$“. 

are a number of simple relationships which the 
Nusselt numbers and dimensionless tempera- 
tures satisfy. For example, in concentric annuli 

Reference to the figures will show that none of 
these relationships is satisfied in eccentric 
annuli. 
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FIG. 7. Effect of eccentricity and radius ratio on N&j. 

FIG. 8. Effect of eccentricity and radius ratio on Nu$j. 
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FIG. 9. ElIect of eccentricity and radius ratio on Nuj$. 

IV. SUMMARY 

We have calculated fully developed solutions 
for the fundamental problems of the first, 
second, and fourth kinds in eccentric annuli. 

As shown by Reynolds et al. [l], these funda- 
mental solutions may be superposed to give 
solutions to problems with a wide variety of 
boundary conditions. Since an exact solution 
of the temperature field equation could not be 
obtained, we used an approximate method in 
which a least squares technique is used to satisfy 
the boundary condition on the outside wall of 
the annulus. We found the least squares tech- 
nique gives accurate solutions rapidly for 
almost all combinations of radius ratio and 
eccentricity. 
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CONVECTION LAMINAIRE FORCEE DANS DES ANNEAUX EXCENTRIQUES 

I&nmC-On etudie la convection for&e pour un Ccoulement laminaire entierement developpi: hydro- 
dynamiquement et thermiquement. En suivant Reynolds et al. nous determinons les solutions de l’equation 
d’tnergie qui satisfont certaines conditions aux limites fondamentales. On peut superposer ces solutions 
fondamentales afin de satisfaire une large varittt de conditions aux limites. On n’a pu trouver de solutions 
exactes de l’equation d’energie mais on a determine une solution approchee. On prtsente pour un large 
domaine d’excentricite et de rapports de rayon les nombres de Nusselt, les temperatures et flux thermiques 
parietaux, les differences de temperature fluide-paroi et les temperatures moyennes du fluide. On pense 

que ces resultats ont une precision de 1 pour cent. 
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LAMINARE ERZWUNGENE KONVEKTION IN EXZENTRISCHEN RINGSPALTEN 

Zusammenfassnng-Die erzwungene Konvektion einer hydrodynamisch und thermisch vollausgebildeten 
laminaren Stromung ‘in exzentrischen Ringspalten wurde untersucht. In Anlehnung an Reynolds und 
andere bestimmen wir die Liisungen der Energiegleichung, die gewissen grundlegenden Grenzbedingungen 
gentigen. Diese Hauptliisungen kann man iiberlagern, um starken Veranderungen der Randbedingungen 
zu geniigen. Exakte Losungen der Energiegleichung konntcn nicht gefunden werden. Statt dessen wurde 
eine Naherungsliisung bestimmt. Nusselt-Zahlen, Wandtemperaturen und Wlirmestrdme, Temperatur- 
differenzen zwischen Wand und Fluid und mittlere Fluidtemperaturen werden fiir einen weiten Bereich 
der Exzentrizitiiten und Radiusverhaltnisse dargestellt. Diese Ergebnisse diirften bis auf 1% genau sein. 

JIAMHHAPHAH BbIHYxfiEHHAH KOHBEHHMfI B 3KCHEHTPH=IECKHX 
HOJIbHEBbIX KAHAJIAX 

hEOTiU(liJr-MCIIOJIb30BaJIaCb BbIHJWAeHHaR KOHBeKIJHFI II&Ill lY%~pOJJMHaMWIeCKH II 

TepMINeCKH IIOJIHOCTbH) pa3BE1TOM JIaMIlHapHOM TeYeHRIl B 3KCqeHTPAYeCKHX KaHaJlaX. 

COR'IaCHO PetiHOJIbACy II np. [I] MbI OIIpeJJeJWIeM PeIIIeHIlFi YpaBHeHWi 3HePI?iH, KOTOPbIe 

J'JJOBJleTBOpf?iOT OIIpefien~HHbIM @J'HJ(aMeHTaJIbHbIM FPaHWIHbIM YCJIOBIWIM. kl3 3THX @HAa- 

MeHTaJIbHbIX PeUleHIlti MOWHO CAeJIaTb CyIIepnO3HQHIO flJIfl TOTO, YTO6bl J'J(OBJleTBOpHTb 

II_eJIOMJ' PRAY rpaHUYHbIX J'CJIOBHfl. Towme peUIeHllR J'paBHeHIlH 3HeplWH HattTH HeJIb3R, 

IIO3TOMy IIOJIyqeHO IIpH6nWKeHHOe PeIIIeHne. %CJIa HyCCenbTa, TeMIIepaTypbI II TeIIJIOBbIe 

IIOTOKH Ha cTeHKe, nepenaA TemnepaTyp crenna - mnRuocTb II cpeflnne TehrnepaT yp~ 
WM~KOCTII npegcTannenbr Rnn muponoro nuanasoua 3KcuenTpwcaTeTon a 0Trromenn~ 

paJ&HyCOB. npe~nOJIaI'aeTCR, YTO TOYHOCTb pe3J'JIbTaTOB COCTaBJIReT IT/,. 


