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Abstract—Forced convection to hydrodynamically and thermally fully developed laminar flow in eccentric

annuli is studied. Following Reynolds et al. [1], we determine the solutions of the energy equation which

satisfy certain fundamental boundary conditions. These fundamental solutions can be superposed to

satisfy a wide variety of boundary conditions. Exact solutions of the energy equation could not be found,

so an approximate solution was determined. Nusselt numbers, wall temperature and heat fluxes, wall-fluid

temperature differences, and mean fluid temperatures are presented for a wide range of eccentricities and
radius ratios. It is believed that these results are accurate to within 1 per cent.

NOMENCLATURE } R,, radius of inner boundary of annulus
fluid specific heat [L?/t2T]; (L]
hydraulic diameter, 2(R, — R,) [L]; R,, radius of outer boundary of annulus
absolute eccentricity [L]; [L];
dimensionless eccentricity, defined in r dimensionless radial coordinate, de-
equation (3d); fined in equation (3a);
,  average heat-transfer coefficient on T*,  fluid temperature [T];
wall | for fundametal problem of T®, dimensionless fluid temperature for
k'th kind when the nonzero boundary the k'th fundamental problem when
condition is applied to wall j, defined the nonzero boundary condition is
equation (36) [M/t*T]; applied to wall j.
unit vector in r direction; T{®, dimensionless average temperature
unit vector in ¢ direction; of wall | for the k'th fundamental
thermal  conductivity of  fluid problem when the nonzero boundary
[ML/t>T]; condition is applied to wall j;
unit normal to outer boundary, de- T.),  dimensionless fluid cup mixing tem-
fined in equation (19); perature for k'th fundamental problem
(%, Nusselt number based on h{* defined when nonzero boundary condition is
in equation (37); applied to wall j, defined in equation
fluid pressure [M/Lt?]; (42);
heat flux at wall j [M/t3]; u*,  fluid velocity [L/t];
radial coordinate [L]; u*,  average fluid velocity [L/t];
u, dimensionless velocity, defined in

* Work performed under the auspices of the United
States Atomic Energy Commission.

+ Present Address: American Cyanamid, Berdan Avenue,
Wayne, New Jersey 07470.

equation (3b):

1 Any consistent set of units may be used. Dimensions
are given in terms of mass (M), length (L), time (t), and
temperature (T).
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W, dimensionless flow rate parameter,
defined in equation (20):

w, fluid flow rate [M/t]:

z, axial coordinate [L];

&, radius ratio, R,/R,;

€, dimensionless eccentricity, defined in

equation (3e);
U, fluid viscosity [M/Lt];
0, fluid density [M/L?];
r, outer boundary of annulus;

(),  dimensionless flux on wall ! for the
k'th fundamental problem when the
nonzero boundary condition is applied
to wall j;

®, angular coordinate.

I. INTRODUCTION

EccENTRIC annuli are employed in a variety of
heat transfer systems. Since an annulus contains
two surfaces on which thermal conditions
may be independently specified, there are a
large number of heat transfer problems of
significant interest. Some years ago, Reynolds
et al. [1] completely solved the problem of heat
transfer to fully developed laminar flow in
concentric annuli. They realized that with
the usual assumptions the energy equation is
linear, and therefore that a temperature field
satisfying arbitrary boundary conditions could
be determined by simply adding appropriate
multiples of temperature fields satisfying certain
fundamental boundary conditions. Four funda-
mental boundary conditions were defined and
the temperature fields satisfying these boundary
conditions were called fundamental solutions.

We will be concerned with laminar forced
convection in eccentric annuli, but we will limit
our study to hydrodynamically and thermally
fully developed flows. Fully developed funda-
mental solutions of the third kind result in in-
determinate forms which cannot be evaluated.
In this paper, we will obtain fully developed
fundamental solutions of the first, second, and
fourth kinds.

The only previously published study of laminar
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forced convection in eccentric annuli is that of
Cheng and Hwang [2]. Their boundary con-
ditions are not one of the fundament sets. We
will discuss their solution in more detail at

tha annranriota mlasa

G aApPpropriaie piace.

I. MATHEMATICAL DEVELOPMENT
Because of symmetry we need only consider
the domain shown in Fig. 1. A cylindrical co-
ordinate system is established with origin at the

Outer boundary

[nner boundary

!
1

FiG. 1. Basic domain for an eccentric annulus.

E
‘*—vg

center of the small cylinder. The equation of the
outer boundary is

I'R,¢) = R* —2REcos ¢ + E* — R2 = 0. (1)

We assume that the fluid is in fully developed
laminar flow. With the additional assumption
that fluid properties are independent of tem-
perature the momentum balance becomes

1 R R@ +
RORY\  dR
It is convenient to introduce the following
dimensionless variables:

1 o*w* 1dp

R iz 2

r = R/R,,

N uoz)

(3a)

(3b)
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o = R{/R,, (3¢)
e = E/R,, (3d)
€ = E/(R, — R,) = ae/(l — a). (3e)

In terms of these dimensionless variables the
equation for the outer boundary becomes

Ir,d)=r>—2recos¢ +e2 — 1/a> =0, (4)
and the momentum balance becomes
10/ 0Ou 1 6%u
—\r=]l+a37p=-1 5
r('jr(r 6r> + r? d¢? )

Equation (5) is to be solved subject to the follow-
ing boundary conditions: Symmetry conditions
require

750 = 25 m) =0 ©

Along solid boundaries the velocity vanishes
u(l,¢) =0 (7a)
wl) = (7b)

By the use of bipolar coordinates, it is possible
to obtain an exact solution for the velocity
field. It does not seem possible, however, to use
the same technique to obtain an exact solution
for the temperature field. Since we must use an
approximate technique to determine the tem-
perature field, we find it simpler and more
convenient to use the same approximate tech-
rique to obtain both the temperature and velo-
city fields. The general solution of equation (5)
which satisfies boundary conditions (6) and (7a)
is

ur, ) =41 — ) + Bolnr + ¥ (" —r™")
n=1

x B, cos n¢.

®

It is impossible to choose the B’s so that boun-
dary conditions (7b) is satisfied everywhere. We
therefore use a technique in which boundary
condition (7b) is approximately satisfied. Since
the same technique is used to solve the tempera-
ture equation, we will postpone a more detailed
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description of the method until after the tem-
perature equation is derived.
With the usual assumptions that fluid proper-

ties are independent of temperature and that
axial conduction is negligible, the energy halance

xial conduction is negligible, the energy balance
becomes

1 ¢ R oT* +
RE&R JdR
Symmetry considerations give two boundary
conditions on temperature:

oT*

0¢ ¢
Additional boundary conditions on temperature
depend on which of the fundamental problems
isunder discussion. For the fundamental problem
of the first kind, we specify that the inner and
outer surfaces are kept at uniform, but different,
temperatures.t Denote the temperatures at the
inner and outer surfaces by T7 and T§. We

introduce the dimensionless temperature T,
defined by

10°T*
RE 047

puc, 0T*

k oz’ ©)

(r,0) = (r m) = (10)

T* — T*
T — TF

Ty (11)
In equation (11) we have adopted the notation
used by Reynolds et al. [1], in which T is the
dimensionless temperature for the fundamental
problem of the k'th kind when the nonzero
boundary condition is applied to wall j. The
boundary conditions on T are then

TG (1) =0,
T(I) = 1.

(12a)
(12b)

With the two walls held at different temperatures,
it is clear that under fully developed conditions
whatever heat enters at one wall leaves at the

t For the fully developed case such as we are considering
here, there is essentially only one fundamental problem
ofthefirstkind. Thisisnot thesituation in the thermal develop-
ment region [1], where there are two distinct problems
depending on whether it is the inside or outside surface which
is raised above the entering fluid temperature.
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other, so that ¢ T*/dzis zero. For the fundamental
problem of the first kind, then, in terms of di-
mensionless variables, equation (9) becomes

1 6*>T¢)

10 ( aTg“)
LN Py P
ror or 1t o¢?

For the fundamental problem of the second
kind we specify that at wall j there is a uniform
axial heat addition, g} Btu/h ft?, while the other
wall is insulated. For the concentric annulus
these two conditions completely specify the
problem. In contrast, in an eccentric annulus we
must further specify the peripheral variation of
temperature or flux on the active wall. Two
limiting cases may be distinguished: uniform
temperature and uniform flux. Although both
conditions are of interest, the concept of funda-
mental solutions which may be added to obtain
solutions of more complex problems requires
that the flux be uniform peripherally as well as
axially, and this is the case which we will examine
(The problem studied by Cheng and Hwang [2]
is related to the fundamental problem of the
second kind, in which, however, there is heat
addition at both walls, and in which the peri-
pheral temperature is uniform.) We introduce
the dimensionless temperature

(2) _

T*
T gDk

=0. (13

(14)

In equation (14), j is either i or o depending on
whether it is the inner or outer wall which is
active. When the inner wall is active the boundary
conditions on T'? are

oT?® x
or

= — . 15a
2(1 —a) (152)
0T
on
In equation (15b) the derivative is taken normal
to the outer boundary. It is most conveniently
calculated using the vector identity

(2
dé’{‘i ) - VTS'2)
n

r=1

Onr:

0. (15b)
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where n is the unit outward normal on the outer
boundary. Equation (15b) therefore becomes

Onl:n.-VT¥® = 0. (15¢)

In turn, » is calculated by

o
R

Introducing equation (4) into this equation, we
find

_ (r—ecos )i, + (esin )i,
"= [(r — ecos ¢)* + (esin ¢p)*]'/*

When the outer wall is active the boundary
conditions on T are

(16)

oTY
=0. 7
ar |, 0 (17a)
Onl:n. VTP = ——. 17b
ni:n 0 21 —a) (17b)

For the fully developed case, 9T*/0z is constant
and may be evaluated by an energy balance.
When the inner wall is active, equation (9)
becomes
(2) 1 827

12 r6:1", +_20’ - o s

ror or re o¢ 2(1 — )W
When the outer wall is active, equation (9)
becomes

16( 6TY
- r " +
ror ar
In these equations W is defined by the double
integral

16°T i
r?oopr 21 —a) W'

(19)

r

j d¢ Jur dr.

1

w (20)

The upper limit- on the first integral indicates
that the integration is to extend to the outer
boundary.

For the fundamental problem of the fourth
kind, we specify that at one wall there is a uni-
form axial heat addition, ¢ Btu/h ft?, while the
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other wall is maintained at a constant tempera-
ture, T*. We introduce the dimensionless tem-
perature

T* — T*
4/D/k

(4) =
T® =

o3y

When the inner wall is active the boundary
conditions on T'* are

oT® ®

or |-,  2l-a)
T (I) = 0.

(22a)
(22b)

When the outer wall is active the boundary
conditions on T are

9, ¢) = 0, (23a)

o
21— a)

As was the case for the fundamental problem
of the first kind, for the fundamental problem
of the fourth kind all the heat which enters at
one wall leaves at the other, so that 6T*/0z is
zero. The energy equation satisfied by T is
therefore the simple form, equation (13).

With the equations and boundary conditions
established we may now determine the tempera-
ture field. Since the procedure followed in all
cases is similar, we will conserve space and report
in detail only the solution for the fundamental
problem of the second kind with the inner wall
active. We must solve equation (18) subject to
boundary conditions (10) and (15). The solution
of equation (18) which satisfies boundary con-
ditions (10) and (15a) is

Onrl:n-VTY = (23b)

3

Bo[rz(lnr - 1)+]nr:|+ Bl[%—Zrlnr
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_—_2r"" ¢ —— % i
TR Y] haad G T

+ Co+ Y D(r "+ Mcosnd. (24)
n=1

In equation (24) we may arbitrarily set C,
equal to zero, since, as the boundary conditions
show, we are solving a Neumann problem, and
therefore cannot determine the absolute tem-
perature level. As in the case of the B’s and equa-
tion (7b), we find that it is not possible to choose
the D’s so that equation (15b) is satisfied every-
where. We therefore use an approximate method
in which we truncate the series appearing in equa-
tions (8) and (24) and solve for the unknown B’s
and D’s by satisfying equations (7b) and (15b) at
a finite number of points. We truncate the B
series in equation (8) at n = N — 1, and the D
series in equation (24) at n = N, so that there are
a total of N unknown B’s and N unknown D’s.
Let M denote the number of points on the outer
boundary at which (7b) and (15b) are satisfied.

We could set M = N and solve for the B’s
D’s. This in fact is just the collocation method
[3]. However, the collocation method often
leads to difficulties. For example, in a study of
laminar flow in eccentric annuli, Tiedt [4] re-
ported that at an eccentricity of 0-8 he could not
obtain solutions for radius ratios smaller than
0-2; and at an eccentricity of 1, he could not
obtain solutions for radius ratios smaller than
0-4. We decided, therefore, to use the least
squares method [ 5] which was first used for heat
transfer problems by Sparrow [6]. In the least
squares method, the number of points at which
the boundary condition is satisfied is much larger
than the number of unknowns. We found that
choosing M = 3N was satisfactory.

To avoid the necessity of using weight factors
[5], we selected the M points to be uniformly
distributed on I'. A simple trigonometric analysis
of Fig. 1 shows that the M points will be uniformly
distributed on I if ¢ coordinates are calculated
using the formula
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sin Jn
ae + cos I ’
M-1

j=01,...,.M— L

¢; = arctan

(25)

In using equation (25) we always choose 0 < ¢
< n. The r; coordinates are calculated from the
solution of equation (4). Satisfying equation (7b)
gives the following equations for the B’s

N—1
Bylnr;+ Y (rj—r;")B,cosn;
n=1

=47 -1.j=01....M -1 (26)
Similarly, satisfying equation (15b) gives the
following equations for the D’s.

N

D, n[fy(ri! — r;" ") cos ng;
n=1

— fz(rj_" + r;') sinn(bj] = Wf—aa)—w

S |
X <— fl{ﬁ—ri—Z;+B0[rj(2lnrj—l)

J

1 1
+ —] + B, [%rf —2nr;+ 1)+ —2:| cos ¢;
r; 2r;
N-1

n+2 n—2
B |-t I
+Z "[n—l’ n—lr

n=2

n+1

h

2

< ~(n+1) )
v 1)r :lcos nqﬁj} +
<B ﬁ—2r Inr —i sin ¢
3815 i g i

5 +2 +2
r r;" 2ro"

B J

+Z "”[n+1+ n—1+(n+1)(n—1):|

sin nd)j}) + ﬁ,
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In equation (27) we have introduced f; and f,
which are defined as

fi =r} —recos ¢;
fy = esing,;.

We first solve equation (26) for the B’s, and then,
with the B’s known we solve equation (27)
for the D’s. The best way of solving equations (26)
and (27) is by the use of the Gram-Schmidt
orthogonalization procedure described by Davis
[5]

Essentially the same procedure is used to
develop the other fundamental solutions, but
the equations for the temperature and the D’s
are, of course, different.

III. RESULTS

It is important to estimate the accuracy of the
results obtained using this approximate method.
For the velocity field there is an exact solution
against which we can compare our approximate
solution. Tiedt [4] tabulates the product of
friction factor and Reynolds number as a function
of radius ratio, o, and eccentricity, €. The friction
factor and Reynolds number are defined as

I dp\ 2D,
a dz / p(a*)?

__ Dyu*p

==

Introducing dimensionless variables and using
equation (20) we find that the product of friction
factor and Reynolds number is

_ 47(1 — a?)(1 — a)?
- Wo? ’

(28)

Re (29)

ARe (30)

With the B’s known from the solution of equa-
tion (26), the velocity field may be calculated as
given by equation (8), and W may be determined
by numerically evaluating the double integral
given by equation (20). We found that an 8 by 8
Gaussian integration formula was sufficient to
maintain the error in W below 0-1 per cent.
With W known, equation (30) may be used to
calculate ARe. Using only five unknowns and
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Table 1. Comparison of exact and approximate values of ARe

Eccentricity
o 08 1-0
Exact Approximate % Error Error Approximate % Error
02 56724 56:721 0-005 48-736 48716 0-04
0-1 60-523 60-481 0-07 54402 54-367 0-06
0-02 64-727 64-654 011 61-598 61-638 —0-06
0-01 65236 65-170 0-10 62-761 67-788 —0-04
0-005 65-408 65-350 0-09 63-370 63-385 —0-02

requiring the velocity to vanish on 15 points on
the outer boundary, approximate values of
ARe were calculated and are compared with
Tiedt’s exact values in Table 1. Comparisons are
made at combinations of « and ¢ for which
Tiedt found the collocation method failed, and
for which he used the exact solution of Piercy
et al. [7]. Table 1 shows that even for these
difficult geometries the maximum error in the
least squares results is 0-1 per cent. For smaller
values of € and larger values of « the error would
be less. For all €, in the limit as o« — 0, the core
vanishes and the annulus becomes a cylindrical
tube, for which we have ARe = 64. We con-
clude, therefore, that the least squares method
predicts accurate values of ARe over the complete
range0 <e < 1,0 a < L.

Of course, there are no exact heat transfer
results against which to compare our results,
otherwise there would be no need for this study.
However, there are a number of ways we can
estimate the accuracy of our results. One method
depends on the fact that the energy equation is
elliptic. For elliptic equations the maximum
principle states that the maximum deviation
between the approximate and exact solutions
in the interior of a region is no larger than the
maximum deviation between the approximate
and exact solutions on the boundary. For the
fundamental problems of the first kind and of
the fourth kind when the inner wall is active,
we specify the temperature along the outer
boundary. After the D’s are determined it is a
simple matter to calculate the temperatures
along the boundary and to determine the maxi-

mum deviation between the calculated and
and specified temperatures. As we shall explain
below, our primary interest is in average quan-
tities, e.g. the average Nusselt number and the
difference between the average wall temperature
and the average fluid temperature, and it is
therefore perhaps more meaningful to calculate
the deviation between the average wall tempera-
ture and the specified wall temperature. The
average error is then calculated as the ratio of
this average deviation to the difference betwen
the average fluid and wall temperatures. For
the fundamental problem of the first kind, we
we found that the average error is less than 1 per
cent for all values of « if € is less than or equal to
0-97. For the fundamental problem of the fourth
kind with the inner wall active, we found the
average error is less than 1 per cent in the region
defined by the inequalities:

€ <09, 0010
£

€ > 09, 02 <a<10.

This methed of estimating the error cannot be
used for the fundamental problem of the second
kind or for the foundamental problem of the
fourth kind with the outer wall active, since
for these problems we specify the gradient
of temperature and not the temperature itself.
For these cases, we estimated the error by re-
peating a particular calculation with increasing
values of M and N until further increases caused
no significant change in the results or until the
equations for the D’s became ill-conditioned
and no solution was obtained. For the funda-
mental problem of the second kind with the
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outer wall active we determined that the errors in
the results are less than 1 per cent for all radius
ratios if the eccentricity is less than or equal to
0-98. For the fundamental problem of the second
kind with the inner wall active we found that the
region in which accurate results were obtained
was slightly smaller. The simplest way to define
theregion in which accurate results were obtained
is to give results in the Tables and Figures which
follow only for those combinations of o and €
for which the errors are estimated to be less than
1 per cent. A similar procedure was used for the
fundamental problem of the fourth kind with
the inner wall active. Most of the results reported
here were obtained using N equal to 15 and M
equal to 45. A typical calculation took about
3.s on a CDC-6600.

In presenting our results it is convenient and
useful to follow Reynolds et al. [1]. For the
fundamental problem of the first kind they
define the dimensionless fluxes

D, [éT*
T — TE\ 0R Jp_r,

D, <aT*>
T¥~To\ on )~
In terms of dimensioness variables these equa-
tions become

1 1
‘pf‘i) == <Pf-0) =

1 1) _
d)g):_(p(ol_)__

2(1 —a) (6T
o = —atp - - X225 o
o ar r=1
21 — oz)_<'T
) = — P — _ -—1. (32
00 0i o 6n>r ( )

In these equations an overbar indicates an
average value. We have again adopted the
nomenclature of Reynolds et al. [1]. &% indi-
cates the dimensionless flux at wall I for the
fundamental problem of the k'th kind when the
nonzero boundary condition is applied at wall j.
It is not necessary to use equation (32) to calcu-
late ®{Y; since the heat which enters at one wall
leaves at the other, we have the simple relation-
ship

o) = — B = — adf. (33)
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For the fundamental problem of the second
kind, Reynolds et al. define the dimensionless
flux so that it is unity on the active wall and zero
on the adiabatic wall. Similarly, for the funda-
mental problem of the fourth kind the dimen-
sionless flux is defined so that it is unity at the
wall on which the flux is specified. Straightfor-
ward energy balence considerations, like those
which lead to equation (33), give

o) = — (34)

DY) = — 1o (35)

The average heat-transfer coefficient on wall /

for the fundamental problem of the k’'th kind

when the nonzero boundary condition is applied
to wall j is defined as

(k)

4
1 — L 36
1j T;kj(k) _ T:&k) ( )
and the average Nusselt number
(k)
Nulf) = Dby ":’f . (37)

In equation (36), the overbar indicates an average
value, T#® is the average temperature on the
I-th wall, and T}® is the cup mixing fluid tem-
perature. The evaluation of these average tem-
peratures will be discussed shortly. For the
fundamental problem of the first kind, intro-
ducing equation (36) into equation (37) and
using equations (11), (31) and (32) gives

1
o

Null) = 4 .
J 1 1)
T - TG

(38)

In the fully developed region we have
Nu) = Nu
Nuld = NuD.

Similarly, for the fundamental problem of the
second kind we have

1
- TS

0 1 #j.

I=j (39a)

Nu? =
(39b)
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(1)

Nui; = Nujo
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1

Nu® = ;
4
aT

(40d)

The calculation of the average temperature
on the inner wall presents no difficulty, but the
average temperature on the outer wall is not
straightforward. The appropriate equation is

T

T8 = jTﬁ"’ (D[ + (@r/dgP]2 dg. @)
v}

In evaluating the integral, r and dr/d¢ are
obtained from the solution of equation (4).
The cup mixing fluid temperature is defined in

FiG. 2. Effect of eccentricity and radius ratio on Nu{}’ and

Finally, for the fundamental problem of the BX
fourth kind we have

1
Nu(y.

1
Nufp) = ———
4 4
O - T8
@ _ %
0f T 1@

32+
28H
24
204
]
-0
3 ha 16
<
"
< SS €=095
12—
€=09
€=08
€=06
L __e=04
(40a) 4
r— €=0
(40b) | | ] ] |
[¢) 0-2 0-4 06 08 10

FiG. 3. Effect of eccentricity and radius ratio on Nu{}) and
Nuib,

(40c)
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50 0

T =002

|00N
50

000!

00005

| | | | [ | | |

J
000055 02 03 04 05 06 07 08 09 10
€

F1G. 4. Effect of eccentricity and radius ratio on Nu?'.

the usual way and is calculated using the equation

n r
{de [ruT¥ dr

k 0 1
T =

= @)
The integrals in equations (41) and (42) must be
evaluated numerically.

The various Nusselt numbers are shown as
functions of radius ratio and eccentricity in
Figs. 2-9. Results are shown only where they
are believed to be accurate to within 1 per cent.
We have tabulated various dimensionless fluxes
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and temperatures for eccentricities of 0-2, 0-4,
0-6, 0-8, 09 and 0-95.F Results for an eccentricity
of zero are given by Reynolds et al. [1]. To con-
serve space, fluxes which may be calculated
by simple equations as equations (33)+35)
were not tabulated. For concentric annuli there

50

005

0-01

00605

0-00I

0-0005

0-0001
02 03 04 05 06 07 08 09 10

€

F1G. 5. Effect of eccentricity and radius ratio on Nul).

t Tabular material is deposited as document NAPS
01185 with the ASIS National Auxiliary Publications
Service, c/o CCM Information Corporation, 909 Third
Avenue, New York, N.Y. 10022 and may be obtained for
$2.00 for microfiche and $5.00 for photocopy.
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32—

a=002
28—
24~
20+
. a=005
3
2

€

FiG. 6. Effect of eccentricity and radius ratio on Nu{®.

are a number of simple relationships which the
Nusselt numbers and dimensionless tempera-
tures satisfy. For example, in concentric annuli

TP - a1}

Nul® = Nl
Nu§d = Nulp
Nufp = Nufp
Nu) = NuY.

Reference to the figures will show that none of
these relationships is satisfied in eccentric
annuli.

117

Hor—

‘08 [X¢]

FiG. 7. Effect of eccentricity and radius ratio on Nuf.

28—

24

20—

g S €=0-8
Tz L
& €=06
€e=04
4/—
— € =0
1 1 1 1 J
o 02 04 06 08 10

FiG. 8. Effect of eccentricity and radius ratio on Nujj}.
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32

a=0-05

a=0-10

FiG. 9. Effect of eccentricity and radius ratio on Nu$).

IV. SUMMARY

We have calculated fully developed solutions
for the fundamental problems of the first,
second, and fourth kinds in eccentric annuli.

MICHAEL L. TROMBETTA

As shown by Reynolds et al. [1], these funda-
mental solutions may be superposed to give
solutions to problems with a wide variety of
boundary conditions. Since an exact solution
of the temperature field equation could not be
obtained, we used an approximate method in
which a least squares technique is used to satisfy
the boundary condition on the outside wall of
the annulus. We found the least squares tech-
nique gives accurate solutions rapidly for
almost all combinations of radius ratio and
eccentricity.

REFERENCES

1. W. C. REYNoLDS, R. E. LUNDBERG and P. A. McCuUEN,
Heat transfer in annular passages, Inz. J. Heat Mass
Transfer 6, 483-529 (1963); see also NASA TN D1972
(1963).

2. K. C. CueNG and G. J. HWaANG, Laminar forced convec-
tion in eccentric annuli, 4.7.Ch.E.JI 14, 510-512 (1968).

3. S. H. CranNDALL, Engineering Analysis. McGraw-Hill,
New York (1956).

4. W. TiEDT, Berechnung des laminaren und turbulenten
Reibungswiderstandes konzentrischer und exzentrischer
Ringspalte, Tech. Ber. 4, Institut fir Hydraulik und
Hydrologic der Technischen Hochschule Darmstadt
(1968); see also Chemiker-Zeiturig/ Chemische Apparatur
90 (1966) and 91 (1967).

5. P. J. Davis and P. RaBiNOwITZ, Advances in orthono-
normalizing computation, Advances in Computers, edited
by F. L. ALT, Vol. 2. Academic Press, New York (1961).

6. E. M. SparRrow and A. HAGI-SHEIKH, Flow and heat
transfer in ducts of arbitrary shape with arbitrary thermal
boundary conditions, J. Heat Transfer 88, 351-358
(1966).

7. N.A.V.PiErcYy, M. S. Hoorer and H. F. WINNY, Viscous
flow through pipes with cores, Phil. Mag. 15, 647 (1933).

CONVECTION LAMINAIRE FORCEE DANS DES ANNEAUX EXCENTRIQUES

Résumé—On étudie la convection forcée pour un écoulement laminaire entiérement développé hydro-
dynamiquement et thermiquement. En suivant Reynolds et al. nous déterminons les solutions de ’équation
d’énergie qui satisfont certaines conditions aux limites fondamentales. On peut superposer ces solutions
fondamentales afin de satisfaire une large variété de conditions aux limites. On n’a pu trouver de solutions
exactes de I’équation d’énergie mais on a déterminé une solution approchée. On présente pour un large
domaine d’excentricité et de rapports de rayon les nombres de Nusselt, les températures et flux thermiques
pariétaux, les différences de température fluide-paroi et les températures moyennes du fluide. On pense
que ces résultats ont une précision de 1 pour cent.



LAMINAR FORCED CONVECTION IN ECCENTRIC ANNULI

LAMINARE ERZWUNGENE KONVEKTION IN EXZENTRISCHEN RINGSPALTEN

Zusammenfassung—Dle erzwungene Konvektion einer hydrodynamisch und thermisch vollausgebildeten
laminaren Strémung in exzentrischen Ringspalten wurde untersucht. In Anlehnung an Reynolds und
andere bestimmen wir die Losungen der Energiegleichung, die gewissen grundlegenden Grenzbedingungen
geniigen. Diese Hauptlosungen kann man iiberlagern, um starken Verdnderungen der Randbedingungen
zn geniigen. Exakte Losungen der Energiegleichung konnten nicht gefunden werden. Statt dessen wurde
eine Nidherungsiosung bestimmt. Nusselt-Zahlen, Wandtemperaturen und Wirmestrome, Temperatur-
differenzen zwischen Wand und Fluid und mittlere Fluidtemperaturen werden fiir einen weiten Bereich
der Exzentrizititen und Radiusverhiltnisse dargestellt. Diese Ergebnisse diirften bis auf 1% genau sein.

JJAMNHAPHAA BBIHVHIEHHAA HOHBERIIMA B OKCHEHTPUYECKUX
KOJBIEBBIX KAHAJAX

Anpnoramua—lcnonp3oBanack BHIHYMKAEHHAA KOHBEKHOMA [pM THIDONMHAMUYECKH U
TePMUYECKH MOJHOCTbI) PpAasBHTOM JIAMMHADHOM TeY€HMH B 9KCIEHTPUYECKMX KAHAJAX.
CoraacHo PeitHoanacy u ap. [1] mel onpegensem peleHuA YpaBHEHMA 9HEPTMH, KOTOpHE
YAOBJIETBOPHIOT ONpefeNéHHELM QYHIAMEHTAJLHEM T'PAHNYHEM yciaoBuaMm. U3 atux ¢yHpa-
MEHTAJBHHX PpeLeHN! MO}KHO CHeJaTh CYNEpNOSHINI AJA TOro, YToGn YAOBJIETBODUTH
LeJIOMy DALY TpaHW4HEIX ycuaoBuit. Tounmie peumrenMsa ypaBHEeHMA sHeprum HalTH Helbas,
MO03TOMY IOJIy4eHO NpubauaenHoe pemenne. Yucna Hyccenpra, TeMneparypsl ¥ TemIOBHE
MOTOKN HAa CTEHKe, Iepenaj TeMIepaTyp CTeHKA — MKUIKOCTb M CpeJlHUe TEMIIEPaT YpPH
MUAKOCTH TIPENCTABJAEHH [IA IMIMPOKOr0 [MANasoHa JKCUEHTPUCUTETOB M OTHOIIEHMI
pangnycoB, IlpepnonaraercA, 4To TOYHOCTb Pe3yJbTATOB COCTaBIALT 19%,.
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